Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0292790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315645

RESUMO

Cyprus was conquered from several populations because of its special geographical location. In this study, 406 unrelated Cypriot samples were tested based on their mitochondrial DNA. In more detail, 185 were Greek Cypriots, 114 Armenian Cypriots and 107 Maronite Cypriots. This is the first time where the mitochondrial DNA of Greek Cypriots, Armenian Cypriots and Maronite Cypriots is compared with the aim of characterizing the maternal ancestry of Cypriots. The control region of the mtDNA is the most informative in terms of studying maternal ancestry and consists of three hypervariable regions (HVS-I, HVS-II, HVS-III). The hypervariable regions can provide important information regarding the maternal ancestor of the tested samples. The entire control region of the mtDNA was used to determine the mitotypes and subsequently the haplogroups of all the Cypriot DNA samples. Based on the aforementioned analyses, Greek Cypriots were found to be genetically closer to Armenian Cypriots, while Greek Cypriots and Armenian Cypriots showed moderate genetic differentiation with Maronite Cypriots. The most prevalent haplogroups among Cypriots were haplogroups H and U, while R0 is common but in different frequencies for Greek Cypriots, Armenian Cypriots and Maronite Cypriots. It is proposed that the maternal ancestor may have originated during the Neolithic period and/or the Bronze age.


Assuntos
DNA Mitocondrial , Humanos , Grécia , Armênia , DNA Mitocondrial/genética , Chipre , Haplótipos
2.
BMC Cardiovasc Disord ; 23(1): 138, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922793

RESUMO

BACKGROUND: Thoracic Aortic Aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threatening vascular disorder due to the risk of aortic dissection and rupture. There is an urgent need to identify blood-borne biomarkers for the early detection of TAA. The goal of the present study was to identify potential protein biomarkers associated with TAAs, using proteomic analysis of aortic tissue and plasma samples. METHODS: Extracted proteins from 14 aneurysmal and 12 non-aneurysmal thoracic aortic tissue specimens as well as plasma samples from six TAA patients collected pre-and postoperatively and six healthy controls (HC), were analyzed by liquid chromatography-tandem mass spectrometry. Proteomic data were further processed and following filtering criteria, one protein was selected for verification and validation in a larger cohort of patients and controls using a targeted quantitative proteomic approach and enzyme-linked immunosorbent assay, respectively. RESULTS: A total of 1593 and 363 differentially expressed proteins were identified in tissue and plasma samples, respectively. Pathway enrichment analysis on the differentially expressed proteins revealed a number of dysregulated molecular pathways that might be implicated in aneurysm pathology including complement and coagulation cascades, focal adhesion, and extracellular matrix receptor interaction pathways. Alpha-2-HS glycoprotein (AHSG) was selected for further verification in 36 TAA and 21 HC plasma samples using targeted quantitative proteomic approach. The results showed a significantly decreased concentration of AHSG (p = 0.0002) in the preoperative plasma samples compared with HC samples. Further analyses using a larger validation dataset revealed that AHSG protein levels were significantly lower (p = 0.03) compared with HC. Logistic regression analysis on the validation dataset revealed males, advanced age, hypertension and hyperlipidaemia as significant risk factors for TAA. CONCLUSION: AHSG concentrations distinguish plasma samples derived from TAA patients and controls. The findings of this study suggest that AHSG may be a potential biomarker for TAA that could lead to better diagnostic capabilities.


Assuntos
Aneurisma da Aorta Torácica , alfa-2-Glicoproteína-HS , Masculino , Humanos , Proteômica/métodos , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/cirurgia , Biomarcadores , Proteínas/metabolismo
3.
Eur J Med Genet ; 66(1): 104673, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36460281

RESUMO

Heritable thoracic aortic diseases (HTAD) are rare pathologies associated with thoracic aortic aneurysms and dissection, which can be syndromic or non-syndromic. They may result from genetic defects. Associated genes identified to date are classified into those encoding components of the (a) extracellular matrix (b) TGFß pathway and (c) smooth muscle contractile mechanism. Timely diagnosis allows for prompt aortic surveillance and prophylactic surgery, hence improving life expectancy and reducing maternal complications as well as providing reassurance to family members when a diagnosis is ruled out. This document is an expert opinion reflecting strategies put forward by medical experts and patient representatives involved in the HTAD Rare Disease Working Group of VASCERN. It aims to provide a patient pathway that improves patient care by diminishing time to diagnosis, facilitating the establishment of a correct diagnosis using molecular genetics when possible, excluding the diagnosis in unaffected persons through appropriate family screening and avoiding overuse of resources. It is being recommended that patients are referred to an expert centre for further evaluation if they meet at least one of the following criteria: (1) thoracic aortic dissection (<70 years if hypertensive; all ages if non-hypertensive), (2) thoracic aortic aneurysm (all adults with Z score >3.5 or 2.5-3.5 if non-hypertensive or hypertensive and <60 years; all children with Z score >3), (3) family history of HTAD with/without a pathogenic variant in a gene linked to HTAD, (4) ectopia lentis without other obvious explanation and (5) a systemic score of >5 in adults and >3 in children. Aortic imaging primarily relies on transthoracic echocardiography with magnetic resonance imaging or computed tomography as needed. Genetic testing should be considered in those with a high suspicion of underlying genetic aortopathy. Though panels vary among centers, for patients with thoracic aortic aneurysm or dissection or systemic features these should include genes with a definitive or strong association to HTAD. Genetic cascade screening and serial aortic imaging should be considered for family screening and follow-up. In conclusion, the implementation of these strategies should help standardise the diagnostic work-up and follow-up of patients with suspected HTAD and the screening of their relatives.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Adulto , Criança , Humanos , Testes Genéticos , Aneurisma da Aorta Torácica/genética , Assistência ao Paciente
5.
PLoS One ; 16(8): e0255140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424929

RESUMO

Y-chromosome analysis provides valuable information regarding the migration patterns of male ancestors, ranging from the Paleolithic age to the modern humans. STR and SNP genotyping analysis provides data regarding the genetic and geographical ancestry of the populations studied. This study focused on the analysis of the Y-chromosome in Maronite Cypriots and Armenian Cypriots, who came to the island as a result of different historical events. The aim was to provide information on the paternal genetic ancestry of Maronites and Armenians of Cyprus and investigate any affinity with the Greek Cypriots and Turkish Cypriots of the island. Since there is limited information in the current literature, we proceeded and used 23 Y-chromosome STRs and 28 Y-chromosome SNPs to genotype 57 Maronite Cypriots and 56 Armenian Cypriots, which were then compared to data from 344 Greek Cypriots and 380 Turkish Cypriots. All samples were assigned to eight major Y-haplogroups but the most frequent haplogroup among all Cypriots is haplogroup J in the major subclade J2a-L559. The calculated pairwise genetic distances between the populations show that Armenian Cypriots are genetically closer to Greek and Turkish Cypriots compared to Maronite Cypriots. Median Joining Network analysis in 17 Y-STR haplotypes of all Cypriots assigned to J2a-L559, revealed that Cypriots share a common paternal ancestor, prior to the migration of the Armenians and Maronites to Cyprus, estimated in the Late Bronze Age and Early Iron Age.


Assuntos
Cromossomos Humanos Y/genética , Migração Humana , Chipre , Genética Populacional , Geografia , Haplótipos/genética , Humanos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
6.
Biosci Rep ; 40(7)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32678444

RESUMO

Thoracic Aortic Aneurysm (TAA) is characterized by the dilation of the aorta and is fatal if not diagnosed and treated appropriately. The underlying genetic mechanisms have not been completely delineated, so better knowledge of the physiopathology of TAAs is needed to improve detection and therapy. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and are known to be involved in cardiovascular diseases (CVDs). The current study aimed to identify miRNAs that can be used as possible biomarkers for the early diagnosis of patients with ascending TAAs (ATAAs). MiRNA expression was profiled by NanoString nCounter technology using 12 samples including tissue and pre- and post-surgical plasma from ATAA patients. Four miRNAs were selected and further validated by real time polymerase chain reaction (RT-PCR) in 22 plasma samples from which three miRNAs (hsa-miR140-5p, hsa-miR-191-5p and hsa-miR-214-3p) showed significant expression level differences between the two types of plasma samples. Further analyses of the corresponding predicted target genes by these miRNAs, revealed two genes (Myotubularin-related protein 4 (MTMR4) and Phosphatase 1 catalytic subunit ß (PPP1CB)) whose expression was inversely correlated with the expression of their respective miRNAs. Overall, in this pilot study, we identified three miRNAs that might serve as potential biomarkers and therapeutic targets in ATAA.


Assuntos
Aneurisma da Aorta Torácica/genética , MicroRNAs/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/sangue , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/cirurgia , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Projetos Piloto , Período Pós-Operatório , Período Pré-Operatório , Proteína Fosfatase 1/genética , Proteínas Tirosina Fosfatases não Receptoras/genética
7.
Mol Genet Genomic Med ; 8(9): e1378, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32597575

RESUMO

BACKGROUND: Thoracic aortic aneurysm and dissection (TAA/D) represents a potentially lethal disease group characterized by an increased risk of dissection or rupture. Only a small percentage (approximately 30%) of individuals with nonsyndromic familial TAA/D have a pathogenic variant in one of the genes that have been found to be associated with the disease. METHODS: A targeted sequencing panel and direct sequencing approach were used to identify causative mutations in the index patients and other family members. RESULTS: In this study we report two apparently unrelated Cypriot families with nonsyndromic familial TAA/D. The proband A is a female patient diagnosed with TAA/D and intracranial aneurysm and opted for an elective intervention. The proband B is a male patient who was diagnosed with TAA/D and underwent cardiac surgery. Sequencing analysis identified a novel splice site variant (c.871+1G>A) in SMAD3 which is shown to be associated with the disease. Analysis of mRNA from the patient's tissue confirmed aberrant splicing and exon 6 skipping. CONCLUSION: Our findings expand the mutation spectrum of variants that have been shown to be associated with nonsyndromic familial TAA/D. This study demonstrates the importance of a comprehensive clinical and genetic evaluation aiming at early diagnosis and intervention.


Assuntos
Aneurisma da Aorta Torácica/genética , Mutação , Proteína Smad3/genética , Adulto , Idoso , Aneurisma da Aorta Torácica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Splicing de RNA , Proteína Smad3/química
8.
BMC Med Genet ; 19(1): 208, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526509

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) and/or thoracic aortic aneurysm and dissection (TAAD) is characterized by a considerable risk of morbidity and mortality of affected individuals. It is inherited in an autosomal dominant pattern and the 20% of patients with non-syndromic TAA have a positive family history. To date, the genetic basis of Cypriot patients with TAA has not been investigated. The purpose of this case report is to determine underlying genetic cause in this Cypriot family with TAA. CASE PRESENTATION: In this report we present a patient with hyper-acute onset chest and back pain diagnosed with Type A Aortic Dissection with severe aortic valve regurgitation, who underwent emergency aortic surgery and Bentall procedure. Further investigation of the patient's family was undertaken where both parents and an additional child were also found to be affected. A targeted sequencing panel including genes with known association to TAA was used to identify causative mutations in the index patient. Massively Parallel Sequencing results identified a frameshift deletion c.363_367del GAGTC, p.Met121Ilefs*5 in the ACTA2 gene and a non-synonymous variant c.3234C > G, p.Ile1078Met in the MYH11 gene. The presence or absence of these variants in the index patient and other family members was verified by Sanger sequencing. To our knowledge, this is the first report of a Cypriot family case diagnosed with TAA presented by two novel variants one in the ACTA2 and the other in the MYH11 genes. CONCLUSIONS: We describe two novel variants in a Cypriot family with TAA that are potentially pathogenic, highlighting the importance of molecular genetic evaluation in families with TAA. These results may prove useful for screening purposes in Cypriot patients with non-syndromic familial TAA facilitating early identification of atrisk family members and direct intervention.


Assuntos
Actinas/genética , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Mutação , Cadeias Pesadas de Miosina/genética , Adulto , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/fisiopatologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/fisiopatologia , Sequência de Bases , Chipre , Ecocardiografia , Família , Feminino , Expressão Gênica , Genes Dominantes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
9.
PLoS One ; 13(6): e0199010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889893

RESUMO

DNA methylation is the most characterized epigenetic process exhibiting stochastic variation across different tissues and individuals. In non-invasive prenatal testing (NIPT) fetal specific methylated regions can potentially be used as biomarkers for the accurate detection of fetal aneuploidies. The aim of this study was the investigation of inter-individual methylation variability of previously reported fetal-specific markers and their implementation towards the development of a novel NIPT assay for the detection of trisomies 13, 18, and 21. Methylated DNA Immunoprecipitation (MeDIP) combined with in-solution targeted enrichment followed by NGS was performed in 29 CVS and 27 female plasma samples to assess inter-individual methylation variability of 331 fetal-specific differentially methylated regions (DMRs). The same approach was implemented for the NIPT of trisomies 13, 18 and 21 using spiked-in (n = 6) and pregnancy samples (n = 44), including one trisomy 13, one trisomy 18 and four trisomy 21. Despite the variability of DMRs, CVS samples showed statistically significant hypermethylation (p<2e-16) compared to plasma samples. Importantly, our assay correctly classified all euploid and aneuploid cases without any false positive results (n = 44). This work provides the starting point for the development of a NIPT assay based on a robust set of fetal specific biomarkers for the detection of fetal aneuploidies. Furthermore, the assay's targeted nature significantly reduces the analysis cost per sample while providing high read depth at regions of interest increasing significantly its accuracy.


Assuntos
Biomarcadores/análise , DNA/metabolismo , Cuidado Pré-Natal , Aneuploidia , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 21 , DNA/química , DNA/isolamento & purificação , Metilação de DNA , Síndrome de Down/genética , Feminino , Feto/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Gravidez , Análise de Sequência de DNA
10.
PLoS One ; 12(2): e0171319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158220

RESUMO

Noninvasive prenatal testing (NIPT) using whole genome and targeted sequencing has become increasingly accepted for clinical detection of Trisomy 21 and sex chromosome aneuploidies. Few studies have shown that sub-chromosomal deletions or duplications associated with genetic syndromes can also be detected in the fetus noninvasively. There are still limitations on these methodologies such as the detection of variants of unknown clinical significance, high number of false positives, and difficulties to detect small aberrations. We utilized a recently developed targeted sequencing approach for the development of a NIPT assay, for large and small size deletions/duplications, which overcomes these existing limitations. Artificial pregnancies with microdeletion/microduplication syndromes were created by spiking DNA from affected samples into cell free DNA (cfDNA) from non-pregnant samples. Unaffected spiked samples and normal pregnancies were used as controls. Target Capture Sequences (TACS) for seven syndromes were designed and utilized for targeted capture enrichment followed by sequencing. Data was analyzed using a statistical pipeline to identify deletions or duplications on targeted regions. Following the assay development a proof of concept study using 33 normal pregnancies, 21 artificial affected and 17 artificial unaffected pregnancies was carried out to test the sensitivity and specificity of the assay. All 21 abnormal spiked-in samples were correctly classified as subchromosomal aneuploidies while the 33 normal pregnancies or 17 normal spiked-in samples resulted in a false positive result. We have developed an NIPT assay for the detection of sub-chromosomal deletions and duplications using the targeted capture enrichment technology. This assay demonstrates high accuracy, high read depth of the genomic region of interest, and can identify deletions/duplications as small as 0.5 Mb. NIPT of fetal microdeletion/microduplication syndromes can be of enormous benefit in the management of pregnancies at risk both for prospective parents and health care providers.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Diagnóstico Pré-Natal , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Natal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Genet Res (Camb) ; 98: e15, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834155

RESUMO

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.


Assuntos
Biomarcadores/análise , Metilação de DNA , DNA/genética , Doenças Fetais/diagnóstico , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Complicações na Gravidez/diagnóstico , Amostra da Vilosidade Coriônica , DNA/sangue , Epigênese Genética , Feminino , Doenças Fetais/sangue , Doenças Fetais/genética , Feto/metabolismo , Humanos , Imunoprecipitação , Testes para Triagem do Soro Materno , Placenta/metabolismo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Primeiro Trimestre da Gravidez
12.
Mol Cytogenet ; 7(1): 73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426166

RESUMO

BACKGROUND: DNA methylation is the most studied form of epigenetic regulation, a process by which chromatin composition and transcription factor binding is altered to influence tissue specific gene expression and differentiation. Such tissue specific methylation patterns are investigated as biomarkers for cancer and cell-free fetal DNA using various methodologies. RESULTS: We have utilized methylation DNA immunoprecipitation (MeDIP) and real-time quantitative PCR to investigate the inter-individual methylation variability of differentially methylated regions (DMRs) on chromosomes 18 and 21. We have characterized 15 newly selected and seven previously validated DMRs in 50, 1(st) trimester Chorionic villus samplings (CVS) and 50 female non-pregnant peripheral blood (WBF) samples. qPCR results from MeDIP and genomic DNA (Input) assays were used to calculate fold enrichment values for each DMR. For all regions tested, enrichment was higher in CVS than in WBF samples with mean enrichments ranging from 0.22 to 6.4 and 0.017 to 1 respectively. Despite inter-individual variability, mean enrichment values for CVS were significantly different than those for WBF in all DMRs tested (p < 0.01). This observation is reinforced by the absence of overlap in CVS and WBF enrichment value distributions for 15 of 22 DMRs. CONCLUSIONS: Our work provides an expansion in the biomarker panel available for non-invasive prenatal diagnosis (NIPD) using the MeDIP-qPCR methology for Down syndrome and can eventually provide the starting point towards the development for assays towards the detection of Edwards syndrome. Furthermore, our data indicate that inter-experimental and inter-individual variation in methylation is apparent, yet the difference in methylation status across tissues is large enough to allow for robust tissue specific methylation identification.

13.
Prenat Diagn ; 32(10): 996-1001, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22833530

RESUMO

OBJECTIVE: To reevaluate the efficiency of the 12 differentially methylated regions (DMRs) used in the methylated DNA immunoprecipitation (MeDIP) real-time quantitative polymerase chain reaction (real-time qPCR) based approach, develop an improved version of the diagnostic formula and perform a larger validation study. METHODS: Twelve selected DMRs were checked for copy number variants in the Database of Genomic Variants. The DMRs located within copy number variants were excluded from the analysis. One hundred and seventy-five maternal peripheral blood samples were used to reconstruct and evaluate the new diagnostic formula and for a larger-scale blinded validation study using MeDIP real-time qPCR. RESULTS: Seven DMRs entered the final model of the prediction equation and a larger blinded validation study demonstrated 100% sensitivity and 99.2% specificity. No significant evidence for association was observed between cell free fetal DNA concentration and D value. CONCLUSION: The MeDIP real-time qPCR method for noninvasive prenatal diagnosis of trisomy 21 was confirmed and revalidated in 175 samples with satisfactory results demonstrating that it is accurate and reproducible. We are currently working towards simplification of the method to make it more robust and therefore easily, accurately, and rapidly reproduced and adopted by other laboratories. Nevertheless, larger scale validation studies are necessary before the MeDIP real-time qPCR-based method could be applied in clinical practice.


Assuntos
Metilação de DNA/genética , DNA/sangue , Síndrome de Down/diagnóstico , Técnicas de Imunoadsorção , Diagnóstico Pré-Natal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Síndrome de Down/genética , Feminino , Feto/química , Idade Gestacional , Humanos , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...